Begriff	Erläuterung
A/V _e - Verhältnis	Bezeichnet die Kompaktheit eines Gebäudes. Je kleiner die Faktor ist, desto geringer sind die Wärmeverluste
Abgesenkter Betrieb	Zeitgesteuerte Solltemperaturabsenkung
Adhäsion	Zusammenhangskraft zwischen Molekülen verschiedener Stoffe
Anlagen-Aufwandszahl e _P	Diese Kennzahl drück das Verhältnis der von der Anlagentechnik aufgenommenen Primärenergie zu der ihr abgegebenen Nutzwärme aus.
Äquivalente Schallabsorbtionsfläche	Ist eine Ersatzfläche, die bei 100 % Absorption den gleichen Schall schlucken würde wie die gesamte Oberfläche des Raumes. Sie beeinflusst die Nachhallzeit und den Raumeindruck
Äquivalenter bewerteter Norm- Trittschallpegel	Wird ermittelt, indem auf der zu prüfenden Decke ein Norm-Hammerwerk aufgestellt wird das in einem bestimmten Rhythmus auf die Decke schlägt. Dabei wird der Schallpegel in dem Raum unterhalb gemessen. Maßgebend sind die Frequenzen zwischen 100 Hz und 3500 Hz. L _{n,w,eq} [dB]
BaZ	Bauaufsichtliche Zulassung
Belüftetes Volumen V _e	Nettovolumen einer beheizten Zone, die dem Luftaustausch unterliegt
Bewerteter Norm-Trittschallpegel	Ist eine Zahl, die Auskunft über zu erwartene Schallpegelwerte bestimmter Frequenzen angibt. L´n,w [dB]
	Schalldämmmaß eines Bauteils unter Berücksichtigung flankierender Bauteile durch Schalllängsleitung über flankierende Seitenwände, Decken und Böden. R´w in dB. Je höher der R´w-Wert ist, desto besser ist die Schalldämmung der Konstruktion. Es
Bewertetes Schalldämmmaß	werden nur Frequenzen zwischen 100 und 3150 Hz berücksichtigt.
Bruttovolumen V _e	Ist das nach Außenmaßen ermittelte Volumen der wärmeübertragenden Hüllfläche
Dampfbremse	Wasserdichte aber nicht Dampfdichte Baustoffe (Beton, Ziegel, Bitumen)
Dampfdiffusion	Übertragung der Feuchte durch Diffusion von der wärmeren zur kälteren Seite eines Bauteils. Der Wärmestrom geht immer von warm nach kalt.

	Sicherheitsschicht falls die Dampfsperre beschädigt ist, verhindert Blasen unter der
Dampfdruckausgleichsschicht	Dachabdichtung
Dampfsperre	Wasserundurchlässiger Baustoff der keine Poren hat (Metall, Glas, Schaumglas)
	Ist der gemessene Schallpegel durch einen Filter A, der das menschliche
	Gehörempfinden nachbildet. Das menschliche Gehör hört Töne um 100 Hz und 3200
	Hz besonders gut. Mit steigender Lautstärke nimmt die Empfindlichkeit ab. Das Gehör
dB(A)	verhält sich in seiner Wahrnehmung logarithmisch.
DIfBT	Deutsches Institut für Bautechnik (Erteilt auf Antrag BaZ)
Diffusionsäquivalente	Bezeichnet die Dicke einer Luftschicht die Wasserdampf den gleichen Widerstand
Luftschichtdicken	entgegensetzt wie zu vergleichende Stoffe
DIN	Deutsches Institut für Normung
EEG	Gesetz für den Vorrang erneuerbarer Energien, 2004
EEWärmeG	Erneuerbare Energien Wärmegesetz
Emissionen von Heizungen	Unerwünschte Abgasprodukte wie CO ₂ , CO, NO, NO ₂ , SO ₂ , VOC, Staub und Ruß.
	Ist die Energiemenge, die der Benutzer zur Aufrechterhaltung der gewünschten
Endenergiebedarf	Raumtemperatur und der Warmwasserbereitung bezieht und bezahlt.
EnEG	Energieeinspargesetz
	Erdöl, Erdgas, Steinkohle, Braunkohle, Koks, Holz, Wind, Wasser, Kernenergie und
Energieträger, Primär-	andere brennbare organische Stoffe. Energieträger die in der Natur vorkommen.
	Heizöl, Erdgas, Flüssiggas, Steinkohle, Braunkohle, Koks, Holz und andere brennbare
Energieträger, Sekundär-	organische Stoffe. Bearbeitete Energieträger die der Verbraucher bezieht.
EnEV	Energie-Einspar-Verordnung, aktuell von 2009
	Solarenergie, Umweltwärmepumpen (Wasser-Wasser, Luft-Wasser),
Erneuerbare Energien	Erdwärmepumpen, Tiefen-Geothermie, Biomasse, Windkraft, Osmosekraft
	Feuerhemmend F30-60, Feuerbeständig F90-120, A, AB, BA, B (A=nicht brennbar,
Feuerwiderstandsklassen	B=brennbar))
Frequenz	Bezeichnet die Anzahl von Schwingungen in einer Sekunde. f [Hz]

	Darf unter Eigenlast nicht zusammenbrechen, muss Flammüberschläge ausschließen,
F-Verglasungen	kein Rauchdurchlass, kein Wärmestrahldurchlass, zugelassen für Rettungswege
Gebäudenutzfläche A _N	Vom Bruttovolumen abgeleitete Grundfläche für öffentlich rechtliche Nachweise
	Basierend auf der Tatsache, das der vorhandene Dampfdruck an keiner Stelle in einem
	Bauteil größer sein kann, als der Sättigungsdruck, grafisch/ rechnerisches Verfahren zur
Glaserverfahren	Ermittlung des Taupunktes.
	Ist der spezifische Wassergehalt, den ein Stoff in Abhängigkeit der relativen
Gleichgewichtsfeuchten	Luftfeuchtigkeit aufnimmt. Ist bei der Verarbeitung von Holz unbedingt zu beachten.
	Faktor für die Einbeziehung der Anzahl der Heiztage im Jahr, Pauschal werden nach
	EnEV 3 Stufen unterschieden. 185 Tage bei einer erforderlichen Heizungsbenutzung ab
	<=10 Grad C => F _{GT} 66; 225 Tage ab <=12 Grad C =>F _{GT} 75; 275 Tage ab <=15 Grad
Gradtagszahlen	C =>F _{GT} 82
	Darf unter Eigenlast nicht zusammenbrechen, muss Flammüberschläge ausschließen,
	kein Rauchdurchlass, erschwerter Wärmestrahldurchlass, nicht zugelassen für
G-Verglasungen	Rettungswege
	Ist die Energiemenge, die zur Deckung des Heizwärmebedarfs benötigt wird. Darin sind
	Verluste des Heizungssystems, der Wärmeübertragung, der Wärmeverteilung, der
Heizenergiebedarf	Wärmespeicherung und der Wärmeerzeugung enthalten.
	Bezeichnet jene Außenlufttemperatur, ab der ein Gebäude bei einer vorgesehenen
	Raumtemperatur unter Nutzung solarer und innerer Wärmegewinne nicht mehr beheizt
Heizgrenztemperatur	werden muss.
	Ist abhängig von den Transmissionswärmeverlusten, den Lüftungsverlusten, den
	solaren Wärmegewinnen, den innerer Wärmegewinnen, der geografischen Lage, der
Heizwärmebedarf	Luftdichtheit des Gebäudes
Heizwerte	siehe Anlage
	Die wärmeübertragende Hüllfläche bilden die Flächen die an Außenluft, Erdreich oder
Hüllfläche	nicht beheizten Räumen grenzen.

	Die Fläche aller Bauteile die an Außenluft, Erdreich oder an nicht oder niedrig beheizte
Hüllfläche, wärmeübertragende	Räume grenzen und Wärme übertragen (Außenmaße).
	An allen Heizsträngen liegt die gleiche Druckdifferenz zwischen Vorlauf und Rücklauf
	an. Der hydraulische Abgleich ist so vorzunehmen, dass bei bestimmungsmäßigen
	Betrieb alle Wärmeverbraucher entsprechend ihrem Wärmebedarf mit Heizungswasser
Hydraulischer Druckabgleich	versorgt werden.
	Ist der Druck den eine Flüssigkeit ausübt, bedingt durch die Flüssigkeitshöhe und der
Hydrostatischer Druck	Dichte der Flüssigkeit.
	Die Jahresarbeitszahl gibt das Verhältnis der jährlich gelieferten Heizwärme zu der
Jahresarbeitszahl	jährlich aufgenommenen (elektrischen) Antriebsenergie an.
	Ist die Summe des Energiebedarfs für den Heizwärmebedarf und den
Jahresprimärenergiebedarf	Warmwasserbedarf multipliziert mit der Anlagenaufwandszahl.
Kapillar aufsteigendes Wasser	Entsteht durch Porosität, Kohäsion und Adhäsion
Kohäsion	Zusammenhangskraft zwischen Molekülen gleicher Stoffe
	Korrosion ist eine besondere Form der Oxidation die mit der Zerstörung des Metalls
Korrosion	verbunden ist. Oxidschichten hingegen können NE-Metalle schützen.
	Elastisch abgehängte Platten deren Oberfläche gelocht, geschlitzt oder offene Fugen
	hat. Z.B. Profilkantbretter, gelochte, geschlitze Platten/Gipskartonplatten,
Lochabsorber	Leichtmetallpanele, schwere Polstermöbel
Luftfeuchtigkeit, absolute	Ist die tatsächlich gespeicherte Wassermenge unabhängig von der Lufttemperatur.
	Setz man die absolute Feuchtigkeitsmasse in das Verhältnis zur maximal
Luftfeuchtigkeit, relative	aufnehmbaren Feuchtemasse erhält man die relative LuftfeuchtigkeitWert, Phi
Monatsbilanzverfahren	siehe Anlage
	Elastisch abgehängte Platten deren Oberfläche geschlossen ist. Z.B. Gipskartonplatten,
Plattenabsorber	Nut- und Federtäfelung, Spanplatten, Furnierplatten
	Elastisch abgehängte oder direkt aufgebrachte Stoffe mit poröser Oberfläche.
	Personen, Vorhänge, Teppichböden, Schaumstoffakustikplatten, Mineralwollplatten,
Poröse Absorber	Holz-Wolle-Leichtbauplatten, Weichfaserlochplatten, poröser, grober Putz
	Ist die Energiemenge, die für vorgelagerte Vorgänge wie Gewinnung, Umwandlung und
Primärenergieaufwand	Verteilung, zur Bereitstellung der Endenergie benötigt wird.

Primärenergiebedarf	Ist die Energiemenge, die zur Deckung des Endenergiebedarfs unter Berücksichtigung vorgelagerter Vorgänge wie Gewinnung, Umwandlung und Verteilung benötigt wird.
growed and	Rohstoffgewinnung -> Aufbereitung -> Produktion -> Transport -> Nutzung ->
Produktionslebenszyklus	Entsorgung eines Energieträgers.
	Siehe Produktionslebenszyklus. Die Prozesskette endet jedoch mit dem Transport ("an
Prozesskette	der Haustür").
Reduzierter Heizungsbetrieb	Außentemperaturgeregelter Teillastbetrieb
	Spiegelbild des real geplanten Gebäudes mit einer standardisierten Bauausführung und
	Anlagentechnik gemäß EnEV-Vorgabe zur Festlegung des zulässigen
Referenzgebäude	Primärenergiebedarfs.
	Stellen Masse-Feder-Systeme dar. Als schwingende Masse wirkt dabei die
	Plattenverkleidung, als Feder der Lufthohlraum. Man unterscheidet Platten- und
Resonanzabsorber	Lochabsorber
	Bei zweischaligen Bauteilen spricht man von der Resonanz- oder Eigenfrequenz, wenn
	beide Schalen gegeneinander mit der größten Amplitude schwingen. Bei der
	Resonanzfrequenz ist die Schwingung des Schwingungserregers gleich der
	Schwingung des Schwingungsaufnehmers. Je geringer die dynamische Steifigkeit s´
	der Dämmschicht ist, desto niedriger ist die Resonanzfrequenz und desto besser der
Resonanzfrequenz	Trittschallschutz.
Schallabsorber	Dienen dazu, die Nachhallzeit zu verkürzen
	Je größer die Schallabsorption ist, desto größer ist die Lärmminderung in dem Raum.
Schallabsorption	Schallabsorption ist frequenzabhängig.
	Die Schallabsorption wird durch den Schallabsorptionsgrad sausgedrückt. sist der
Schallabsorptionsgrad	Faktor nichtreflektierte Schallenergie / auftreffende Schallenergie.
	Man unterscheidet Luftschall und Körperschall und als besondere Form des
Schallarten	Körperschall den Trittschall.

Schallbrücken	Schallbrücken sind konstruktive Mängel oder unbeabsichtigte Effekte, die dem Schall einen verlustarmen Übergang von einer Bauteilseite zur anderen ermöglichen. Z.B. Mörtelreste die 2-schaliges Mauerwerk verbinden, zu niedriger oder defekter Randdämmstreifen zwischen Estrich und Wand (schlecht) oder Rohdecke (schlechter) oder Schwerlastverbindungen die 2 getrennte Bauelemente wieder verbinden.
Schalldämmmaß R´ _w	Je höher der R´w-Wert ist, desto besser ist die Schalldämmung der Konstruktion.
Sole	Wasser-Glykol Gemisch zur Wärmeübertragung in geschlossenen Kreislauf einer Wärmepumpe mit Erdreich als Wärmequelle.
	Der sommerliche Wärmeschutz ist abhängig vom Sonneneintragskennwert der transparenten Außenbauteile und der Bauart. Er ist u.a. abhängig vom Verhältnis Fensterfläche zur Grundfläche, Dachneigungswinkel, Orientierung nach Himmelsrichtung, der Klimaregion, Sonnenschutzeinrichtungen und
Sonneneintragskennwerte	Verschattungswirkungen.
Spezifischer	Ist der Transmissionswärmeverlust bezogen auf die Wärme übertragende
Transmissionswärmeverlust	Umfassungsfläche (beheizte Hülle), H´ _T
Systemgrenze	Die wärmeübertragende Hüllfläche bildet die Systemgrenze
Tauperiode	Ca. Mitte November bis Mitte Januar
	Ist die Temperatur, bei der Luftbeginnt, Feuchtigkeit in Form von Wasser
Taupunkt-Temperatur	auszuscheiden Kondensation).
Tauwasserausfall	siehe Tauwasserebene, Wasserdampfsättigungsdruck
Tauwasserbildung	siehe Tauwasserebene, Wasserdampfsättigungsdruck
	Ist die Ebene, die mittels des Glaserverfahren ermittelt wird, an dem Luft beginnt,
Tauwasserebene	Feuchtigkeit in Form von Wasser auszuscheiden Kondensation).
Transmissionswärmeverlust	H_{T}
Trittschalldämmung	Je größer die flächenbezogene Masse ist, desto niedriger ist die Resonanzfrequenz und desto besser ist die Trittschalldämme.
Trittschallverbesserungsmaß	Einzelangabe für die bewertete Trittschallminderung einer Deckenauflage, ↓ ↓ dB]

Übertragungsverluste	
U-Wert (ehemals K-Wert)	Ist der Wärmedurchgangskoeffizient
	Beschreibt den Bewegungszustand von Materie. Die Moleküle bewegen sich umso
Wärme	schneller je wärmer es ist.
	Man unterscheidet geometrisch bedingte, konstruktions- bzw. materialbedingte,
	massenstrombedingte, konvektive (undichte Stellen in der Gebäudehülle) und
	umgebungsbedingte (z.B. Heizkörpernischen) Wärmebrücken. Isokörbe können den
Wärmebrücke	Wärmestrom verringern.
Wärmebrückenverlust-Koeffizient	Dient zur Berechnung der Transmissionswärmeverluste einer Wärmebrücke, (rho)
	Ist der U-Wert (früher K-Wert) eines Bauteils. Darunter versteht man die
	Wärmeenergiemenge, die pro Sekunde (s) durch 1m ² einer Stoffschicht mit der Dicke d
	(m) hindurchgeht, wenn der Temperaturunterschied 1 Kelvin (K) beträgt. Je kleiner der
Wärmedurchgangskoeffizient	U-Wert, desto größer der Energieeinsparwert.
	Über den Wärmedurchgangswiderstand wird der U-Wert eines Bauteils berechnet.
Wärmedurchgangswiderstand	$RT=R_{si} + R + R_{se} [m^2 K/W]$
	Gibt an wie groß der Widerstand eines Materials ist, Wärme durchzulassen. Je größer
Wärmedurchlasswiderstand	er ist, desto besser ist seine Dämmwirkung. R [m²K/W]
	Latente Wärmeenergie ist die Energie, die erst durch Wechsel des Aggregatzustand
Wärmeenergie, latent	freigesetzt bzw. gebunden wird (z.B. Verdunstungskälte, Kondensationwärme).
Wärmeenergie, sensibel	Wärmeenergie ohne Einbeziehung der vorhandenen latenten Wärmeenergie.
	Sind abhängig vom Gebäude und seiner Nutzung, der technischen Ausstattung, der
Wärmegewinne, intern	Personenbelegung, dem Betrieb vorhandener Anlagen, der Beleuchtung u.a
	Entstehen durch solare Effekte an transparenten und opaken Bauteilen sowie Fenstern.
	Sie sind abhängig von der Neigung und Ausrichtung des Bauteils/Fensters, der
L	geografischen Lage, der Jahreszeit, ev. Luftverschmutzungen und Beschattungen und
Wärmegewinne, solar	dem Material des Bauteils.
Wärmekonvektion	Ist die Wärmemitführung bei Flüssigkeiten oder Gasen (Wärmewalze)

	Gibt die Wärmemenge (Ws) an, die im Beharrungszustand (Dauerheizung) in 1
	Sekunde durch 1 m ² einer 1 Meter dicken Schicht eines Stoffes hindurchgeht, wenn die
Wärmeleitfähigkeit	Temperaturdifferenz beider Bauteiloberflächen 1 Kelvin beträgt. Lambda [W/m*K]
Wärmeleitung	Ist die Übertragung der Wärme von Molekül zu Molekül.
Trainioioitang	Unter der Wärmemenge Q (Ws) versteht man jene Energiemenge, die durch den
	Wärmestrom Q´ (W) in 1 Sekunde (s) von einem Körper abgegeben oder
Wärmemenge	aufgenommen wird.
	Elektrische Maschine zur Erhöhung des Temperaturniveaus der Wärmequelle (
	Erdreich, Grundwasser, Außenluft) mit Expansion am Verdampfer und Verdichtung
	eines Kältemittels im raumseitigen Verflüssiger/Kondensator. Monovalent als alleiniger
Wärmepumpe, monovalent, bivalent	Heizwärmeerzeuger, bivalent als nicht alleiniger Heizwärmeerzeuger.
	Die Wärmespeicherfähigkeit Q ist umso größer, je größer die flächenbezogene Masse
	(Kg/m²) eines Bauteils ist, je größer seine spezifische Wärmekapazität c ist, je größer
Wärmespeicherfähigkeit	die Temperaturdifferenz ist.
Wärmestrahlung	Wärmestrahlen sind Infrarot-Strahlen und sind nicht an Materie gebunden.
Wärmeübergangswiderstand	Ist der Kehrwert des Wärmeübergangskoeffizienten.
	Der Wärmeübergangskoeffizient h drückt die Wärmemenge (Ws) aus, die pro Sekunde
	(s) zwischen 1 m ² der Oberfläche eines festen Stoffes und der Luft ausgetauscht wird,
	wenn der Temperaturunterschied 1 Kelvin (K) beträgt. Bei Strahlung h _S , bei Konvektion
Wärmeüberganskoeffizient	h _K .
	Ist der Wärmefluss von einem warmen Bauteil auf ein kälteres Bauteil. Dabei wird
Wärmeübertragung	Wärmeenergie übertragen.
	Man unterscheidet Wärmeleitung, Wärmeströmung durch Konvektion und
Wärmeübertragungsarten	Wärmestrahlung.
	Ist eine stoffspezifischer Kennwert, der angibt, wievielmal größer der Widerstand eines
Wasserdampfdiffusionswiderstand	Stoffes gegen Wasserdampfdiffusion ist, als Luft in der gleichen Schichtdicke
Wasserdampf-Diffusions-	Die Eigenschaft eines Stoffes dem Wasserdampfdurchgang einen Widerstand
Widerstands-Faktor	entgegenzusetzen. μ-Wert

	Sowie Luft einen Druck ausübt, so erzeugt auch Wasserdampf in der Luft einen Druck.
	Der Dampfdruck ist dem Luftdruck quasi übergelagert. Er ist abhängig von der
Wasserdampfdruck	Temperatur und der rel. Luftfeuchte.
	Beträgt die rel. Luftfeuchte 100 %, so ist auch der Dampfdruck am größten. Das ist der
Wasserdampfsättigungsdruck	Wasserdampfsättigungsdruck.
	Entsteht durch nicht drückendes Wasser, drückendes Wasser, Kapillarwirkungen,
Wassertransport	Wasserdampfdiffusion
WSVO	Wärmeschutzverordnung
Zone	Bereich eines Gebäudes mit mind. 4 K abweichender Raumtemperatur